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Slow secondary relaxation in a free-energy landscape model for relaxation
in glass-forming liquids
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Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary
~a! relaxation is modeled by transitions among different free-energy minima. The secondary~b! relaxation
then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the
molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice
relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior
similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not
possible to obtain a crossing of the time scales associated witha andb relaxation. In our model these processes
always merge at high temperatures and thea process remains above the merging temperature. The relation to
other models is discussed.@S1063-651X~99!07002-6#

PACS number~s!: 64.70.Pf
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I. INTRODUCTION

Despite considerable efforts, a detailed understanding
the glass transition is still missing~for reviews see@1–3#!.
There are several aspects of the relaxation behavior of su
cooled liquids, which have been subject to extensive disc
sions in the last few years. Apart from the question of
applicability of mode coupling theories~MCT! @4#, the ques-
tion concerning heterogeneity of thea relaxation has been
addressed in many recent studies@5#. At present it seems tha
the a relaxation can be viewed as heterogeneous, altho
the relation to a characteristic length scale still poses a q
tion @5,6#, as many of the applied experimental techniqu
are sensitive to molecular reorientational dynamics. C
cerning the temperature dependence of the dynamic he
geneities, little is known at present as most studies are
ried out at temperatures slightly above the calorimetric gl
transition temperatureTg @7#.

Several models have been formulated to treat the prob
of dynamical heterogeneities, most of which rely on the
istence of long-lived domains or regions in the supercoo
liquid, see, e.g., Refs.@3# and@8#. One of us in collaboration
with others recently introduced a free-energy landsc
model for thea relaxation in strongly supercooled liquid
@10–12#. In this model molecular reorientation is assumed
be coupled intrinsically to the structural relaxation, which
turn is modeled as transitions among an extensive numbe
free-energy minima. When interpreted in terms of doma
in this model the restructuring of domains is responsible
a relaxation. We note that in the low-temperature regime
relevance here MCT is of little use since the idealized v
sion does not give rise to any structural relaxation at all a
the dynamical equations occurring in more sophistica
models have not been solved so far@9#.

*On leave from Institut fu¨r Physikalische Chemie, Johanne
Gutenberg-Universita¨t Mainz, 55099 Mainz, F.R.G.
PRE 591063-651X/99/59~2!/2067~17!/$15.00
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Another aspect of glassy relaxation, which has attrac
much attention, is the~slow! b relaxation. This relaxation
process is thought to be an intrinsic property of glassy rel
ation by many@13–15#. However, there still is some discus
sion about its molecular origin@16–18#. Whereas in some
cases, an intramolecular reorientation@16,17# has been sug-
gested as the origin of theb process, this process has al
been observed in rigid molecules like toluene@18,20# and
fluorocarbon mixtures@21,22#. We note that Goldstein re
marked already in his seminal paper on the energy landsc
picture of glassy relaxation@19# that one should not rule ou
the possibility that theb process may be related to the pac
ing of the molecules in the amorphous phase. It is to
mentioned that this process is much slower than the~fast! b
process playing a central role in the two-step decay of d
sity correlation functions within the framework of MCT.

Some aspects of the dielectric loss in the glassy state s
to show universal behavior. The spectra are symmetric o
logarithmic frequency scale and the peak position chan
with temperature according to a simple Arrhenius law. T
behavior can be modeled excellently by the assumption
Gaussian distribution of activation energies with an appro
mately temperature-independent width. Recently, it has b
emphasized that the mean activation energy correlates
the calorimetric glass transition temperatureTg , Eb;24Tg
@18#. Typically, the time scale of theb process is in the kHz
regime atTg to be compared with about 100 s for thea
process. Therefore, at temperatures not too high, a clea
separation of thea andb peaks is possible. At higher tem
peratures, the peaks seem to merge and the typically sh
schematic plots of a merging or crossing of the timescale
a and b relaxations heavily rely on extrapolations of theb
peak frequency from low temperatures.

Concerning the merging of thea and b process, severa
interpretations have been put forward so far. Some auth
suggest that at temperatures higher than the merging
perature,Tmerge, the a process dies out due to vanishin
intensity @23#. Rössler @24# argues that the merging of th
processes takes place at the temperature where a chan
2067 ©1999 The American Physical Society
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2068 PRE 59DIEZEMANN, MOHANTY, AND OPPENHEIM
the transport mechanism in supercooled liquids can be
served. Similar observations have been reported by Han
et al. @25#. This means that there should be a relation
tween the MCT critical temperature andTmerge. As pointed
out by Arbeet al. @17#, a note of caution is appropriate in th
interpretation of the merging of thea andb peaks. Most of
the data are analyzed in terms of two distinct peaks an
subsequent extrapolation of the peak frequency of theb pro-
cess to higher temperatures. These authors used a mor
phisticated data analysis and were able to resolve s
puzzles concerning the time scale of the dielectrica process
of polybutadiene as compared to the viscosity. However,
analysis relies on a specific model for theb process and the
assumption of statistical independence of the two proces

Apart from the time scale, a more or less similar behav
is found for the intensity of theb peaks. When corrected fo
the Curie behavior, it usually is found to increase with
creasing temperature. This increase is very weak belowTg
but becomes much more pronounced aboveTg . Correspond-
ingly, the intensity of thea peak decreases with increasin
temperature@17,18#.

It is the purpose of the present paper to generalize
above-mentioned free-energy landscape model@10,11,12# in
order to take into account theb process in addition to thea
relaxation. As already mentioned, the fundamental assu
tion of this model is an intrinsic coupling of the orientation
~and translational! degrees of freedom of a tagged molecu
to the a relaxation. Denoting the rates of transitionse8→e
among connected states~minima! e by k(eue8), the model
assumption of an intrinsic coupling states that molecular
orientations are completely determined by thek(eue8). In
other words, any transition from a molecular orientationV to
a different orientationV8 is associated with a correspondin
transition among the statese, which define the minima in the
free-energy landscape. HereV denotes the orientation of th
relevant interaction in a laboratory axes system, specified
the Euler anglesV5(a,b,g) @26#. The model starts from a
composite Markov process@27# „V(t),e(t)… from which the
non-Markovian process of molecular reorientationV(t) is
obtained as a projection by integrating over all statese. In
this model, reorientational time correlation functions dec
to their equilibrium value only after a number of transitio
have taken place. This, for instance, allows a simple in
pretation of several experiments monitoring higher-or
correlation functions@10#. The same model can be applied
the translational motion and the diffusion constant obtains
has been shown that a number of so far unresolved feat
related to thea relaxation can be understood naturally with
the framework of this model, including the different stretc
ing of rotational correlation functions as obtained by diffe
ent experimental techniques, the similarity in their tim
scales, and the apparent enhancement of translational d
sion @11#. Since the orientationV is associated with thea
process, the reorientational motions are modeled by fi
isotropic angular jumps. It then appears natural to iden
the b relaxation with processes taking place inside
minima of the free-energy landscape. Physically, one wo
assume that the associated reorientational motions wil
neither isotropic nor of large scale. In the following we w
consider the simplest possible model for such a scenario.
will formulate the rate equations for a simple reorientati
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among two sites around some prescribed axis. This gives
to dielectric loss as well as to spin-lattice relaxation due
the b process. The eventual decay to zero of the conside
correlation function is achieved by thea process at high
enough temperatures.

The outline of the paper is the following. In the ne
section we briefly recall the essential features of the fr
energy landscape model and set up the rate equations fo
generalized model. This section, therefore, is of a more
mal nature. Readers only interested in the physical aspec
the model may skip and go directly to Sec. III, where w
present the results of model calculations for both the die
tric loss and the spin-lattice relaxation times. Section IV co
tains a discussion of our results and some remarks on
treatment of experimental data. Finally, we close with so
conclusions in Sec. V.

II. ACTIVATED a AND b RELAXATION
IN A FREE-ENERGY LANDSCAPE MODEL

In this section we set up the rate equations for the co
posite Markov process used to describe both the primary
slow secondary relaxation in supercooled liquids and glas
Concerning thea process, the procedure is identical to t
one used in Refs.@10# and@11#, which we briefly review here
for completeness.

If we assume that the structural relaxation in a sup
cooled liquid nearTg is governed by activated dynamics, i.e
by transitions among an extensive number of free-ene
minima ~or valleys in the spin-glass notation!, we can set up
a master equation for the Green’s functionG(e,tue0):

Ġ~e,tue0!52k~e!G~e,tue0!1E de8k~eue8!G~e8,tue0!,

~1!

with k(e)ª*de8k(e8ue). The ratesk(e8ue) for a transi-
tion e→e8 obey detailed balance and we have defined
decay ratek~e!. As in Ref.@11# we will consider two differ-
ent models for the transition rates. One is defined by a glo
connectivity among the free-energy minima and referred
as aglobally connected model~GCM! in what follows. In
addition to the global connectivity we assume that once
escape from the initial minimume has taken place, the des
tination minimume8 is chosen at random that is correspon
ing to the density of states~DOS! h(e8). We then have

k~e8ue!5h~e8!~k`
ae2b~Ea2e!!, ~2!

whereb5(kBT)21, Ea is a common activation free energy
andk`

a denotes an ‘‘attempt frequency.’’ This choice repr
sents a mean-field-like random trap model. If we switch fro
the values of the free energy in a given minimume to the
corresponding activation free energy,Ea2e, we have a ran-
dom barrier model. We do not distinguish among the
choices, since there is a linear relation among them.
other choice for the transition rates is alocally connected
model ~LCM!, where only transitions between minima o
similar values ofe are allowed. Whereas the GCM migh
seem more plausible on first sight, the LCM may be relev
if the value ofe is among the relevant order parameters
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used, for example, by Stillinger@28#. In this case one ends u
with a Fokker-Planck equation for the Green’s function a
one has activated transport governed by entropic barr
@29#. In the simplified version used here, thee-dependent
diffusion coefficient is given byD(e)5k`

ae2b(Ea2e) and the
entropic force stems from a potentialU(e)5b21 ln@h(e)#
@10#. In both cases the equilibrium population of the minim
or states is given by

peq~e!5Z21h~e!e2be where Z5E de h~e!e2be. ~3!

For a further discussion of the master equation and the ph
cal picture underlying the proposed scenario, we refer
Refs. @10# and @11#. There also the procedure to treat t
composite Markov process„Va(t),e(t)… is described.

We now set up the rate equations for the compo
Markov process„Va(t),vb(t),ê(t)…. Here Va denotes the
orientation of the tagged molecule that is to be changed
the course of time due toa relaxation,vb that orientation
associated with theb process, andê[(e,m) now is a two-
dimensional variable withm denoting the activation free en
ergy of theb process. Theb process is viewed as a sma
amplitude reorientational process definedwithin a single
minimum of the free energy. We do not specify the inter
lation betweene and m now, except for the physically rea
sonable choice that the rates for transitions amongdifferent
minima are independent ofm. Two possible relations be
tweene andm are as follows.

~i! The values ofe and m are completely uncorrelated
which means they are chosen from independent distribu
functionspeq(e) andg(m). There is no correlation betwee
the escape rate from statee and the activation energy for th
b process in that state.

~ii ! The value ofe determines the value ofm. In practical
calculations one might choosem to be given as a function
m5 f (e). Here one has a strong correlation among the a
vation energies for thea andb process in a given state.

The processe(t) is viewed as the fundamental stochas
process responsible for the primary relaxation in the syst

In order to model both thea andb processes, we procee
in the following way ~cf. Fig. 1!: We assume that theb
process can be modeled as a simple two-site angular jum

FIG. 1. The definition of the relative orientation of the axisA in
a molecular fixed coordinate system. The axisA coincides with the
z axis of the coordinate system~A!, AiZA , and is assumed to
change due to reorientations about an angled and its polar angle
relative to the axis of the relevant interaction (zM) is denoted byu,
cf. text. Also indicated is the isotropic reorientation of theM system
due to thea process~dotted arrow!.
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jump angled around some axis. Since this axis does n
necessarily coincide with the orientation of, e.g., the mole
lar dipole moment~as is relevant for dielectric relaxation! or
one of the principal axes of an electric field gradient ten
~which is relevant for deuteron NMR! we assume that the
axis A has an arbitary but defined orientation relative to
molecular axis system~M!. The latter is defined in a way tha
thezM axis coincides with the axis of the relevant interacti
under consideration. Theb process is now modeled in as
suming thatA performs two site jumps on a cone aroundzM
with fixed cone angleu and so far unspecified jump angled.
ConsequentlyA becomes time dependent. This means t
the orientation of the coordinate system~A!, whereZA coin-
cides withA, relative to theM systemVAM constitutes our
processvb(t). Here onlyd is time dependent in accord wit
our assumption. We thus have

v~ t !5„aAM~e!,u~e!,d~e,t !…,

v15„aAM~e!,u~e!,d~e!…, v25„aAM~e!,u~e!,0…, ~4!

where we have allowed for an additional dependence of
relevant angles one. This assumption is physically reason
able since different molecular configurations correspond
to different minima in the free-energy landscape might
particular differ in local density, allowing for different mean
squared displacements. Additionally, we assume that
equilibrium populations of the two orientationsv1 and v2
are equal,peq(v i)5 1

2 , i 51,2, thus neglecting any bias. W
mention that for our present purposes the anglesaAM(e)
need not be further specified as they do not enter in
calculations of the time correlation functions considered
this paper.

Having defined the reorientational model we will use f
theb relaxation, the only thing remaining is the definition
the correspondinga process. In view of the above conside
ation, this is straightforward: The isotropic reorientatio
giving rise toa relaxation are just the tumbling motions o
the M system relative to a well-defined laboratory~L! sys-
tem,

Va~ t !: Va~ t !5„aML~ t !,bML~ t !,gML~ t !…, ~5!

where we~as in all following relations! use the convention o
Rose@26#.

Before analyzing the corresponding master equations
us summarize the physical picture of the above definitio
We view the complex reorientational motion in supercoo
liquids as a composite process of two distinct motions: Th
are ‘‘fast’’ restricted angular fluctuations~but still much
slower than any microscopic time scale! associated withb
relaxation, which we model by a simple two-site angu
jump model.~The reason for assuming only two orientatio
v1 andv2 is simply that the corresponding master equat
can be solved easily.! Superimposed on these we have t
~isotropic! tumbling of the jump axis corresponding to thea
relaxation. In terms of the free-energy landscape picture
ting the overall frame for all considered relaxation process
the b relaxation @vb(t)# corresponds tointravalley relax-
ation and thea relaxation@Va(t)# corresponds tointervalley
relaxation.
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2070 PRE 59DIEZEMANN, MOHANTY, AND OPPENHEIM
Since the assumption of a two-site jump model for theb
process is rather restrictive, we relax this in the formal
velopment that follows and assume a continuous range
vb . When returning to a discrete notation all integrals in t
following expressions simply have to be replaced by the c
responding summations. The same holds, of course, for
variableê5(e,m).

The master equation for the conditional probability@27#
of the composite Markov process„Va(t),vb(t),ê(t)… reads

Ṗ1u1~Va ,vb ,ê,tuVa9 ,vb9 ,ê9!

5E dVa8 E dvb8 E dê8W~Va ,vb ,êuVa8 ,vb8 ,ê8!

3P1u1~Va8 ,vb8 ,ê8,tuVa9 ,vb9 ,ê9! ~6!

along with the initial condition

P1u1~Va ,vb ,ê,t50uVa9 ,vb9 ,ê9!

5d~Va ,Va9 !d~vb ,vb9 !d~ ê,ê9!,
~7!

whered(x,y) denotes a Dirac delta function in the case
continuous variables and the Kronecker symbol in the d
crete case. For the equilibrium population we neglect co
lations among the different processes and approximate

P1~Va ,vb ,ê !.peq~Va!peq~vb!peq~ ê !

5peq~Va!peq~vb!peq~e!g~m!. ~8!

According to our model, we now choose the transition m
trix W in the following way:

W~Va ,vb ,êuVa8 ,vb8 ,ê8!

5@K ~eue8!P~e,e8!~VauVa8 !$cd~vb ,vb8 !

1~12c!peq~vb!%1P~e,m!~vbuvb8 !

3d~Va ,Va8 !d~e,e8!#d~m,m8!. ~9!

With the definitionn(x,y)512d(x,y) the various operators
~matrices! are explicitly given by

K ~eue8!52k~e!d~e,e8!1k~eue8!n~e,e8!, ~10!

P~e,e8!~VauVa8 !5d~Va ,Va8 !d~e,e8!

1L~e,e8!~VauVa8 !n~Va ,Va8 !n~e,e8!,

~11!

and

P~e,m!~vbuvb8 !52P~e,m!~vb!d~vb ,vb8 !

1P~e,m!~vbuvb8 !n~vb ,vb8 !,

P~e,m!~vb!5E dvb8P~e,m!~vb8 uvb!. ~12!

The transition rates among two orientationsVa are chosen to
be
-
or
e
r-
he

f
-
-

-

L~e,e8!~VauVa8 !5d„Va2~Va81DVa!…

where DVa5„f~e,e8! ,c~e,e8! ,f~e,e8!…. ~13!

Here, we have assumed that the angular jump angles in ty
andz direction are the same. General choice of these an
accounts for anisotropic reorientations. In the following w
always stay with isotropic reorientations, which amounts
setf (e,e8)5(c (e,e8) /A8) @30#. Note that the above choice o
L (e,e8)(VauVa8 ) is more general than the one used in R
@11#. However, the results are very similar; see Ref.@30#. In
addition, we have already made use of the fact that only
transition rates associated with theb process depend on th
activation energiesm.

In the two-site jump model to be utilized in later calcul
tions, the matrix~12! is given by

P~e,m!~v i uvk!52G~e;m!$d~v i ,vk!2n~v i ,vk!%,

i ,k51,2, ~14!

whereG~e;m! denotes the rate for the reorientational jump
A couple of comments are in order. The structure of theW

matrix in Eq.~9! is the following.

~a! With any transition among the different minima d
scribed by the ratesk(eue8) a transitionVa→Va8 is associ-
ated. The fact that the ‘‘diagonal element’’ in Eq.~11! is
unity ~instead of the negative sum of the off-diagonal e
ments! reflects the assumption thatVa changes in timesolely
due to e→e8 transitions. There is no extra mechanis
available for changes. For this reason the mat
P (e,e8)(VauVa8 ) does not have the structure of a transiti
matrix as typically found for master equations; in particul
there is no sum rule.

~b! As we assume thatvb(t) is a process defined within
a free-energy minimum, the corresponding transition ma
~12! occurs on the ‘‘diagonal’’ with respect toe @}d~e,e8!# in
the transition matrixW. The matrix for transitions among th
various possible values of the orientationvb , Eq. ~12!, does
obey the sum rule.

~c! As it is still a question of the definition of the particu
lar model whether or notvb(t) may change in case of ae
→e8 transition, we have included the term in the cur
brackets in expression~9!. The physical meaning of this term
is the following. If the parameterc equals unity, there is no
correlation among the processese(t) and vb(t) in which
case the value ofvb after ae→e8 transition is the same a
before, which is accounted for by the termcd(vb ,vb8 ). In
the other limitc50 the value ofvb randomizes completely
with every e→e8 transition, hence the term (1
2c)peq(vb). A similar ansatz though in a different conte
has been used in connection with a composite Markov p
cess by Beckert and Pfeifer, and Sillescu@31,32#. Note that
other scenarios would of course be possible, but would
necessarily complicate the physical picture.

Since a~numerical! solution to the master equation, Eq.~6!,
usually is not feasible in the present form, we proceed in
following way. Since the eigenvectors of the transition m
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trix P(e,e8)(VauVa8 ) are known to be the Wigner rotatio
matrices, we expand the conditional probabilityP1u1 in terms
of these:

P1u1
~m!~Va ,vb ,e,tuVa9 ,vb9 ,e9!

5 (
l ,m,n

S 2l 11

8p2 D Dnm
~ l ! ~Va!Dnm

~ l !* ~Va9 !G~ ln !
~m! ~e,tue9!.

~15!

Here, we have used the fact thatm does not change in th
course of time@cf. Eq. ~9!# and denoted the dependence
P1u1 andG on m by a superscript. The latter obeys the fo
lowing rate equation:

Ġ~ ln !
~m! ~e,tue9!5E dvb8 E de8W~ ln !

~m! ~vb ,euvb8 ,e8!

3G~ ln !
~m! ~e8,tue9!. ~16!

Here, we have

W~ ln !
~m! ~vb ,euvb8 ,e8!

5$P~e,m!~vbuvb8 !2k~e!d~vb ,vb8 !%d~e,e8!

1k~eue8!L~e,e8!~ ln !$cd~vb ,vb8 !

1~12c!peq~vb!%n~e,e8! ~17!

with

L~e,e8!~ ln !5
2l 11

8p2 E dVaE dVa8 Dnm
~ l !* ~Va!

3L~e,e8!~VauVa8 !Dnm
~ l ! ~Va8 !

5cos~2nf~e,e8!!dn,n
~ l ! ~c~e,e8!!. ~18!

Note that in case ofP(e,m)(vbuvb8 )50 the above equation
reduce to the ones considered in Refs.@10,11#.

The next step consists in performing an expansion of
G( ln)

(m) (e,tue9) in terms of the~as yet unknown! eigenfunc-
tions of P(e,m)(vbuvb8 ). This is most easily achieved for
mally by using a Dirac notation and introducing the prop
gator

P~ ln !
~m! ~e,tue8!5E dvbE dvb8 uvb&

3G~ ln !
~m! ~vb ,e,tuvb8 ,e8!^vb8 u,

G~ ln !
~m! ~vb ,e,tuvb8 ,e8!5^vbuP~ ln !

~m! ~e,tue8!uvb8 &. ~19!

We now introduce a representation$uq&%, which diagonalizes
W( ln)

(m) (vb ,euvb8 ,e8) with respect to$uvb&%:

V~vb ,q!ª^vbuq&, V21~vb ,q!ª^quvb&. ~20!

This yields for the resulting Green’s function,
f

e

-

Ġ~ ln,q!
~m! ~e,tue9!5E de8W~ ln,q!

~m! ~eue8!G~ ln,q!
~m! ~e8,tue9!,

~21!

with

W~ ln,q!
~m! ~eue8!52$G~e,m!~q!1k~e!%d~e,e8!

1k~eue8!L~e,e8!~ ln !

3$c1~12c!zq%n~e,e8!. ~22!

Here, we have defined

G~e,m!~q!ª2E dvbE dvb8 V21~vb ,q!

3P~e,m!~vbuvb8 !V~vb8 ,q!

and

zqªE dvbE dvb8 V21~vb ,q!peq~vb!V~vb8 ,q!.

~23!

In case the eigenvectors$uq&% are known, one is left with the
problem of the diagonalization of the matrixK . This is
achieved most easily numerically after symmetrization
this matrix.

In terms of the above-defined eigenvectors and Gree
functions the desired conditional probability reads

P1u1
~m!~Va ,vb ,e,tuVa9 ,vb9 ,e9!

5 (
l ,m,n

S 2l 11

8p2 D E dq Dnm
~ l ! ~Va!V~vb ,q!

3G~ ln,q!
~m! ~e,tue9!Dnm

~ l !* ~Va9 !V21~vb9 ,q!.

~24!

Equation~24! allows the calculation of arbitrary time corre
lation functions. Here, however, we restrict ourselves to
most general orientational two-time correlation function th
is of experimental relevance,

Cn1n2

~ l ! ~ t !5^Dn1n2

~ l ! @VAL~ t !#Dn1n2

~ l !* @VAL~0!#&. ~25!

Using the well-known transformation properties of th
Wigner rotation matrices@26# we easily find

Cn1n2

~ l ! ~ t !5E deE de8E dVaE dVa8 E dvbE dvb8

3E dm peq~e8!g~m!peq~Va8 !peq~vb8 !

3 (
n,m52 l

l

Dn1n
~ l ! ~vb!Dnn2

~ l ! ~Va!Dn1m
~ l !* ~vb8 !

3Dmn2

~ l !* ~Va8 !P1u1
~m!~Va ,vb ,e,tuVa8 ,vb8 ,e8!. ~26!
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We now give the results that are obtained if theb process
is modeled via jumps among two sites. The correspond
transition matrix is given in Eq.~14!. The eigenvalues are
easily found to be

G~e,m!~q51!50 and G~e,m!~q52!52G~e;m! ~27!

and the matrix of the eigenvectors is simply given by

V~v i ,q!5
1

&
for ~ i ,q!Þ~2,2!

and V~v2 ,q52!52
1

&
. ~28!

In this case there are two different Green’s functions t
occur in the expression for the conditional probability, E
~24!. Since theq51 eigenvalue of theb process equals zer
and the resulting Green’s function does not depend onm at
all, we write

G~ ln !~e,tue8!ªG~ ln,1!~e,tue8!. ~29!

Similarly, the index 2 is redundant for the other Green
function. Therefore, we denote it by

G~ ln !
~m! ~e,tue8!ªG~ ln,2!

~m! ~e,tue8!, ~30!

Using Eqs.~28!–~30! in Eq. ~24!, we arrive at (i ,k51,2)

P1u1
~m!~Va ,v i ,e,tuVa8 ,vk ,e8!

5
1

2 (
l ,m,n

S 2l 11

8p2 D Dnm
~ l ! ~Va!Dnm

~ l !* ~Va8 !

3$G~ ln !~e,tue8!1~2 !~ i 1k!G~ ln !
~m! ~e,tue8!%.

~31!

The Green’s functions obey the following rate equations@cf.
Eq. ~21!#:

Ġ~ ln !~e,tue9!5E de8 W~ ln !~eue8!G~ ln !~e8,tue9!

with

W~ ln !~eue8!52k~e!d~e,e8!1L~e,e8!~ ln !k~eue8!n~e,e8!,
~32!

and analogously

Ġ~ ln !
~m! ~e,tue9!5E de8 W~ ln !

~m! ~eue8!G~ ln !
~m! ~e8,tue9!

with

W~ ln !
~m! ~eue8!52$2G~e;m!1k~e!%d~e,e8!

1cL~e,e8!~ ln !k~eue8!n~e,e8!. ~33!

From the last expression it is obvious that a crucial role
played by the parameterc. If it is set to zero,c50, one
simply has
g

t
.

s

G~ ln !
~m! ~e,tue8!5e2$2G~e;m!1k~e!%td~e,e8!.

The Green’s functionG( ln)(e,tue8) is just the one that is
obtained in the absence of anyb relaxation and is identical to
the one considered in Refs.@10,11#. Its occurence stems from
the fact that the total probability for theb process is to be
conserved. This in particular means that the general form
P1u1 , Eq. ~31!, is unchanged if more complex models for th
reorientational motion associated with theb process are con
sidered. One eigenvalue always equals zero and the
thing that changes is the number of Green’s functionsG( ln,q)

(m)

along with their weight factors@the factor (2)( i 1k) in Eq.
~31!#, as each eigenvalueG (e,m)(q) gives rise to the oc-
curence of the associatedG( ln,q)

(m) .
Inserting the expression for the conditional probabili

Eq. ~31!, into Eq. ~26! allows us to write

Cn1n2

~ l ! ~ t !5
1

2l 11
$An1n2

~ l ! ~ t !1Bn1n2

~ l ! ~ t !%. ~34!

If we replace the actually occurringG( lm)(e,tue8) and
G( lm)

(m) (e,tue8) in this expression by

G~ l !~e,tue8!.
1

2l 11 (
m521

l

G~ lm!~e,tue8!, ~35!

and a similar expression forG( l )
(m)(e,tue8), we find

An1n2

~ l ! ~ t !5E deE de8peq~e8! f a
~ ln1!

„u~e8!,d~e8!…

3G~ l !~e,tue8!, ~36!

Bn1n2

~ l ! ~ t !5E deE de8peq~e8!@12 f a
~ ln1!

„u~e8!,d~e8!…#

3E dm g~m!G~ l !
~m!~e,tue8!. ~37!

Note that these expressions are independent ofn2. The am-
plitudes are defined by

f a
~ ln1!

„u~e!,d~e!…ª
1

2 H 11(
m

@dn1m
~ l ! $u~e!%#2 cos@md~e!#J .

~38!

According to the above remark it should be clear that
amplitudes f a

( ln1)
„u(e),d(e)… depend on the model chose

for theb process. We note that the approximation Eq.~35! is
excellent for isotropic reorientations, cf. Sec. III, and it
exact for small step reorientations@30#. Without this approxi-
mation each term in the sum occurring in Eq.~38! is to be
multiplied by G( lm)(e,tue8) or G( lm)

(m) (e,tue8), respectively,
and the resulting expressions forAn1n2

( l ) (t) andBn1n2

( l ) (t) are

more complicated.
From the functionCn1n2

( l ) (t) all experimentally relevant

observables may be calculated. For instance, the correla
function of the first-order Legendre polynomial, which is th
observable in dielectric relaxation experiments, is sim
given by
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g1~ t !5
C00

~1!~ t !

C00
~1!~0!

~39!

and the correlation function giving rise to the spectral den
ties as observed in spin-lattice relaxation experiments is

Cm~ t !5C0m
~2!~ t !. ~40!

The above general expressions will be used in the next
tion, where we present results of model calculations for
imaginary part of the dielectric constant and the aver
spin-lattice relaxation rates. We end this section by not
that a similar formalism can be applied to translational m
tions of tagged particles. In this case the transition ma
L (e,e8)(VauVa8 ) in Eq. ~11! is to be replaced by a matri

L (e,e8)(R¢ uR¢ 8) and the corresponding eigenvectors~the
Wigner rotation matrices! in the expansion~15! by the plane
waveseik–R, cf. Ref. @11#. Similar arguments then apply fo
the modeling of theb process, cf. the model of Arbeet al.
@17#.

III. RESULTS OF MODEL CALCULATIONS

Before we show results for the dielectric susceptibilit
and the spin-lattice relaxation rates, let us discuss some p
erties of the expressions obtained in the last section. For
simple model of angular jumps among two sites for the
orientations associated with theb relaxation, the most gen
eral orientational two-time correlation functionCn1n2

( l ) (t) can

be written as a sum of two different terms, cf. Eq.~34!. For
more complicated models, there would be more terms; h
ever, the Green’s functionG( l )(e,tue8) associated witha re-
laxation occurring in the termAn1n2

( l ) (t) @cf. Eq. ~36!# will

always be present. The reason for this is just given by
fact that the total probability of the stochastic processvb is
a conserved quantity. This means that orientational corr
tion functions always will show a decay to a plateau va
due to the combined effect ofa and b relaxation and then
decay to their equilibrium values due toa relaxation. Of
course, the plateau value and the form of the initial de
depend on the model chosen for theb relaxation.

When considering the dependence of the jump angles
curring in the expressions of the last section upon the va
e, one would assume that they will vary with that valu
Consider, for instance, the angled~e!; since it is a reasonabl
assumption that low-lying free-energy minima correspond
a more close packing or a higher value of some local dens
one would expectd to be a decreasing function ofe. Similar
arguments may apply to the anglesf (e,e8) andc (e,e8) occur-
ring in the expression forL (e,e8)( ln), Eq. ~18!. In all follow-
ing calculations we neglect these dependencies for simpl
and use single values for these angles, which then co
spond to the average jump angles in the system. This sim
fication allows us to write

f a
~ ln1!

ª f a
~ ln1!

~u,d!5
1

2 H 11(
m

@dn1m
~ l ! ~u!#2 cos~md!J

~41!
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Cn1n2

~ l ! ~ t !5
1

2l 11
$ f a

~ ln1!
F l

~a!~ t !1~12 f a
~ ln1!

!F l
~b!~ t !%,

~42!

from which the role of thef a
( ln1) as amplitudes is most trans

parent. The definition of the functionsF l
(a)(t) andF l

(b)(t) is
evident from Eqs.~36! and ~37!.

As already stated in the beginning of Sec. II, there are t
possible extreme choices for the interrelation between
valuee in a given state and the value for the activation fr
energy for theb processm in that state. If we choosem to be
a prescribed function ofe, the Green’s functionG( l )

(m) does
not depend onm explicitly and the*dm g(m) occurring in
Eq. ~37! simply yields unity. In this case all transition rate
in particularG(e;m)5G(e), are determined by the variabl
e as there is strong correlation betweene andm. In the other
extreme case of vanishing correlation among the two v
ables, one simply hasG(e;m)5G(m) independent ofe. This
case corresponds to a random choice of the activation e
giesm for each statee.

It is illustrative to consider some limits of the equatio
derived in Sec. II.

~1! If we assume thatd50 ~or alsou50 for the relevant
casen150!, then we findf a

( ln1)
51 and the correlation func

tion decays solely due to reorientations associated with tha
process. The same result is obtained ifG(e;m)50 and c
51 is chosen in Eq.~33!.

~2! If we choosek(eue8)→0, only theb process ‘‘sur-
vives’’ and the second term in Eq.~42! is of the form
F l

(b)(t)5*de peq(e)e22G(e)t if m5 f (e) @G(e;m)5G(e)#,
and F l

(b)(t)5*dm g(m)e22G(m)t in case of no correlation
amonge and m @G(e;m)5G(m)#. In any case,F l

(b)(t) is
given as a linear superposition of exponentially decay
functions.

It is clear that the above limitk(eue8)→0 physically corre-
sponds to low temperatures, well below the glass transi
temperatureTg . Since in this case an unsymmetrical choi
of the DOSh~e! yields unsymmetrical spectra for theb pro-
cess, we will neglect any correlation amonge and m in the
following calculations.@We will use unsymmetricalh~e!
since for a symmetrical DOS the spectra of thea process
also will be symmetrical. Only for a symmetrical DOS theb
spectra also would be symmetrical.#

A more important remark concerns the choice of t
‘‘correlation’’ parameterc in Eq. ~33!. If this parameter is
chosen to be unity,c51, the two processesvb(t) ande(t)
are completely uncorrelated. It then follows from Eq.~33!
that for c51:

G~ ln !
~m! ~e,tue8!5e22G~m!tG~ ln !~e,tue8!, ~43!

where G( ln)(e,tue8) is just the Green’s function for thea
process, cf. Eq.~32!. This means in this particular case w
have

Cn1n2

~ l ! ~ t !5
1

2l 11
$ f a

~ ln1!
1~12 f a

~ ln1!
!F~b,0!~ t !%F l

~a!~ t !,

~44!
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where we defined

F~b,0!~ t !5E dm g~m!e22G~m!t. ~45!

We mention that Eq.~44! is exactly of the form, which has a
long history in the interpretation of dielectric data@15,17,18#.
Note that the assumptionc51 means that the orientationvb
after ae→e8 transition is exactly the same as the one bef
that transition. This seems a rather unplausible assump
from a physical point of view. The structural relaxation
modeled by the transitions among the different free-ene
minima. Therefore, the local configuration of the molecu
are assumed to change due to these transitions. In su
picture one always would assume that also thevb will
change in case of such a transition asvb represents a par
ticular orientation within a given configuration.

The choicec50, on the other hand, corresponds to
strong correlation between the processese(t) andvb(t). In
this casevb randomizes with everye→e8 transition, i.e.,vb
takes on both valuesv1 andv2 with a probability of 50%. In
this case we have from Eq.~33!, for c50,

G~ ln !
~m! ~e,tue8!5e2$2G~m!1k~e!%td~e,e8!, ~46!

and correspondingly,

Cn1n2

~ l ! ~ t !5
1

2l 11
$ f a

~ ln1!
F l

~a!~ t !

1~12 f a
~ ln1!

!F̃~a!~ t !F~b,0!~ t !% ~47!

with

F̃~a!~ t !5E de peq~e!e2k~e!t. ~48!

Thus, it is seen that although one again has a product of
functions occurring forF l

(b)(t) in Eq. ~42!, the decay func-
tion for ‘‘the pure b process’’ is not multiplied by the cor
responding one for the ‘‘purea process.’’ Instead, the func
tion F̃ (a)(t) is identical to the one obtained if thea process
is modeled by random reorientations, cf.@10#. Only in this
unphysical case Eqs.~44! and ~47! coincide. Note that
F (b,0)(t) and F̃ (a)(t) are independent of the rankl of the
considered correlation function. Remember, however,
the amplitudesf a

( ln) do depend on this rank.
Before we proceed to present the results of the mo

calculations, we will fix the model parameters that will b
used in all following calculations. In all calculations we u
a G distribution for the DOS,

h~e!5N~de!pe2q~de!, ~49!

whereN denotes a normalization constant and~de! the de-
viation from the maximum value. This way it is assured th
h~e! is centered around zero. We mention that an exponen
tail also is characteristic of the energy distributions in me
field spin glasses. Here, however, we use aG distribution just
for computational convenience. Since the ‘‘attempt f
quency’’ occurring in Eq.~2! merely sets the overall time
scale, we choose the productk`

ae2bgEa to define the tem-
e
on

y
s

a

o

at

el

t
ial
-

-

peratureTg51/bg . We set Boltzmann’s constant to unity
kB51, throughout. We always choose this value in such
way that the characteristic decay time constant of the co
lation function of the first rank Legendre polynomialg1(t) is
on the order of 100 s.

Additionally, we use the following characterization of th
b relaxation. We always assume that the activation free
ergiesm ande are uncorrelated. We choose the values om
from a Gaussian distributiong(m) of meanEb and variance
s. The rates for the reorientations are chosen to be of
Arrhenius form,

G~m!5k`
be2bm. ~50!

This represents the most simple physically reasona
choice. This means, we have the following parameters at
disposal: For thea process we have the values ofp andq for
the DOS and the overall activation free energyEa . Since the
latter just gives the steepness of the correlation time in
Arrhenius plot, we fix its value by the restriction that th
correlation time be on the order of 1028 s at a temperature
T.1.2Tg . The time scalek`

a is set according to the above
mentioned requirement. For theb process there are the pa
rametersk`

b , Eb , ands. We follow Kudlik et al. @18# and
fix k`

b.1015s21 and Eb.24Tg . With these preliminaries
the relevant parameters of the model calculations are g
by the ratio X(Tg)ª(k`

ae2bgEa)/(k`
be2bgEb), the param-

etersp, q, Ea , Eb , ands. The above choice ofEb524Tg
means that the time scales of thea and theb process become
comparable at approximately 1027 s.

In addition to the parameters characterizing the shape
the distributions and the time scales of the two processes
also have to choose the values of the jump anglesf, c, and
d. Here, we will use an isotropic model for the reorientatio
associated witha relaxation,f5(c/A8) and usec510° in
all model calculations that follow. A mean reorientation
angle on the order of 10 ° has been in found in careful NM
investigations on orthoterphenyl@33#, toluene,@34# and glyc-
erol @35#. Concerning the jump angled, we proceed in the
following way: It has been found in some experiments th
the mean-squared displacement increases much stronger
linear—approximately exponential—with temperature f
temperatures aroundTg @36,37# or higher. For a simple two-
site jump model a simple relation between the jump dista
r jump and the mean-squared displacement can be given,

^r 2&5p1
eqp2

eq@2r jumpsin~d/2!#2. ~51!

In some NMR investigations@37,38#, the jump angle in the
above expression has been taken as temperature indepe
and the temperature dependence has been attribute
temperature-dependent equilibrium populationspi

eq. This,
however, means that one is concerned with a very asymm
ric double-well structure of the minima among which th
two-site jumps take place. In the following we use the alt
native interpretation that the jump angled is temperature
dependent in an Arrhenius-like fashion,d(T)5d0e2bEd, as
has also been used by Hinze and Sillescu@39# in their inter-
pretation of NMR relaxation experiments on toluene. Figu
2~a! shows ^r 2& calculated according to Eq.~51! for two
different choices ofd(T). In one cased0 is chosen in a way



ho
e
e

de
e
d

a
h-
r
-
In

n
rm
n

f
-

e-

the

c-

f
i-

i-
e
s of
of

o

-

°

-

d

PRE 59 2075SLOW SECONDARY RELAXATION IN A FREE-ENERGY . . .
that d510° at 0.8Tg and in the other exampled.3° at that
temperature. The values are chosen this way only to s
that such a temperature dependence can be used in ord
show qualitatively the same behavior as found in real sup
cooled liquids. In particular, it can be seen from Fig. 2~a!
that ^r 2& rises strongly in the temperature range ofTg for
both choices. Of course, relations such as Eq.~51! strongly
depend on the model considered.

Even more important is the dependence of the amplitu
f a

( ln) on the angleu. The two amplitudes of interest in th
following are f a

D[ f a
(10) in case of dielectric relaxation an

f a
SLR[ f a

(20) for spin-lattice relaxation. The angleu between
the axis of reorientation and the one of the relevant inter
tion usually will be different for the two experimental tec
niques as, e.g., the direction of a relevant carbon-deute
bond ~in case of deuteron NMR! does not necessarily coin
cide with the direction of the molecular dipole moment.
using the amplitudesf a

D for the calculation of the dielectric
response we have to assume that dielectric relaxatio
dominated by single molecule relaxation and that cross te
in the dipolar interaction can be neglected. The depende
of f a

D and f a
SLR on the angleu is shown in Fig. 2~b!, where

we plotted these quantities as a function of temperature
variousu and one choice ofd(T). The rather strong depen

FIG. 2. ~a! ^r 2&/r jump
2 as a function of temperature for tw

choices of the temperature dependence of the jump angled. In one
example the jump angle is chosen to be 10° at 0.8Tg ~full curve!,
which corresponds to the choiced0,a510°e5.5/(0.8Tg) and in the other
case it is chosen to be 10° at 0.9Tg ~broken curve! corresponding to
d0,b510°e8.0/(0.9Tg). ~b! The amplitudes relevant for the calcula
tions of the dielectric constant (f a

D) and the spin-lattice relaxation
rates (f a

SLR) as a function of temperature for the choiced(T)
5d0,ae2b5.5 @cf. ~a!#. The angleu is chosen to be 20°, 40°, 60
~from top to bottom! in the case off a

D ~full lines! and 10°, 20°, 30°
for f a

SLR ~broken lines!.
w
r to
r-

s

c-

on

is
s

ce

or

dence onu and the different absolute values off a
D and f a

SLR

are obvious from that plot. We note that the values off a
D(u

.60°) are on the order of magnitude of experimentally d
termined values@17,18#.

We now present the results of model calculations for
imaginary part of the dielectric susceptibility,

F* ~v!5
e* ~v!2e`

e02e`
5LF2

d

dt
g1~ t !G , ~52!

whereL denotes the Laplace transform ande0 ande` denote
the zero and infinitive frequency limits, respectively. A
cording to Eqs.~39! and ~42!, we have

F~v!5 f a
DF1

~a!~v!1~12 f a
D!F1

~b!~v!, ~53!

with F1
(x)(v) denoting the Laplace transforms o

@2d/dt F1
(x)(t)#. All calculations are performed by numer

cal solution of Eqs.~32! and ~33! in a similar way as ex-
plained in Ref.@11#. Here, we only mention that we numer
cally diagonalize the matrices defined implicitly in th
discrete versions of these equations using 50–100 value
e. From the resulting Green’s functions, all observables
interest are obtained easily.

In Fig. 3 we showF9(v) versus frequency for the GCM
@Fig. 3~a!# and the LCM@Fig. 3~b!#. In both cases aG distri-
bution with p510, q50.3 according to Eq.~49! for h~e! is
used. The remaining parameters arek`

b51015 s21 and Eb

524Tg in both cases. Furthermore, we usedX(Tg)522.8,
Ea5114Tg , and s57Tg in the GCM calculations and

FIG. 3. ~a! Dielectric susceptibilityF9(v) versus frequency
according to Eq.~53! for a globally connected model. The param
eters are given in the text. Full lines,c50; dotted lines,c51. The
temperatures vary from 0.8Tg to 1.2Tg in equal steps. The dashe
line represents the spectrum atTg . ~b! The same as in~a! for a
locally connected model.
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X(Tg)5105, Ea5108Tg , ands54.5Tg for the LCM. The
amplitude f a

D was chosen according to the lowest curve
Fig. 2~b!. The effect of the different widths chosen for theb
process is clearly seen in the spectra, especially belowTg .
The full lines represent calculations with the parameterc set
to zero, which means thatvb randomizes with eache→e8
transition and the dotted lines are results forc51. The dif-
ferences in the spectra are not very pronounced. Only
temperatures larger than roughly 1.1Tg , a clearly visible dis-
crepancy is apparent. In all cases an apparent merging o
a and theb peak occurs at a temperature of approximat
1.16Tg– 1.18Tg for the parameters chosen. We have also p
formed calculations for different sets of parameters. As
results qualitatively agree with the ones presented in Fig
we do not show them here. The most prominent differen
occur if f a

D is chosen differently, as this affects the relati
weights of the contributions ofF1

(a)(v) andF1
(b)(v) in Eq.

~53! to the susceptibility.
We now proceed with an analysis of the data presente

Fig. 3. For this purpose we separately determine the p
position vp and the width forF1

(a)(v) and F1
(b)(v). The

results of this analysis are shown in Fig. 4. Concern
F1

(a)(v), we compared the values obtained from a numer
determination of the widths and the position with the resu
of Kohlrausch fits to the time correlation functiong1(t)
5e2(t/t)b

, which were converted to the former via the e

FIG. 4. ~a! Logarithm of the peak positionsvp for the GCM
spectra of Fig. 3~a! versus inverse temperature. The peak position
F1

(a)(v) is shown as the dot-dashed line. The solid line represe
the results forF1

(b)(v) with c50; the dashed line is the same fo
c51 @corresponding to the full and dotted lines in Fig. 3~a!#. Fi-
nally, the dotted line is obtained by extrapolation from the lo
temperature behavior ofF1

(b)(v). ~b! Full width at half maximum
versus inverse temperature for the same calculations as used i~a!.
The different lines represent the same parameters as in~a!.
or

he
y
r-
e
3,
s

in
ak

g
l

s

pressions given by Dixon@40#. The deviations between th
two methods did not exceed 5%. The corresponding val
of widths and positions in the case ofF1

(b)(v) were deter-
mined numerically. The results forvp and the full width at
half maximum for the calculations according to the GC
@Fig. 3~a!# are plotted versus inverse temperature in Fi
4~a! and 4~b!, respectively. Without showing them here, w
mention that the results of the corresponding LCM calcu
tions behave very similar@apart from the smaller width o
F1

(b)(v) due to the smallers chosen in those calculations#.
Concerning the behavior of the position and the width

the a peak~dot-dashed lines in Fig. 4!, we note that the fact
that the peak position varies in an almost Arrhenius-l
form has its origin in the assumption of a temperatu
independent DOSh~e!. When calculations with the presen
model are compared to experimental data, it is usually fou
that one has to allow for a temperature-dependent width
the DOS @11,12#. In other words, the temperature depe
dence of the width of thea peak shown in Fig. 4~b! is less
pronounced than is often found experimentally. Assumin
temperature-dependent width of the DOS yields a stron
curvature of the peak position and also a steeper rise of
width as a function of inverse temperature. As we are mai
interested in those features associated with slowb relaxation
in the present paper, we always used a temperat
independenth~e!.

The extrapolated peak frequency of theb process crosse
the corresponding one of thea process at ln(vp).6.5. Note

that at low temperaturesk(eue8).0 and thereforeF
(b)

(v)
.F1

(b,0)(v), whereF1
(b,0)(v) denotes the response functio

associated withF (b,0)(t) according to Eq.~45!. This func-
tion represents the low-temperature limit independent of
choice of the correlation parameterc, cf. Eqs.~43! and~46!.
The effect of averaging due to thea process is evident from
the increase ofvp and the drop in the width ofF1

(b)(v).
Note that the time constants of the extrapolated lo
temperature data and the real spectra differ by approxima
one decade at the temperature where according to the
trapolation a crossing of the two processes would occur.
evident from these considerations that a crossing of tha
and b process cannot occur in our model as thea process
leads to an averaging over the distribution of jump ratesG~m!
for theb relaxation if the mean time constants for reorien
tions associated with the two processes do not differ
much. In Fig. 4~a!, the onset of the deviations between t
behavior ofF1

(b)(v) and the extrapolated low-temperatu
regime first occurs at a temperatureT.1.1Tg . At this tem-
perature the two peak frequencies differ by more than t
decades. This clearly shows that care has to be taken in
trapolating data related tob relaxation to higher tempera
tures. The effect of the averaging due to theVa→Va8 tran-
sitions is seen even more pronounced when comparing

widths of F1
(b)(v) and F

(b,0)
(v) as extrapolated from low

temperatures. We note that experimentally, of course, th
is no clear-cut separation betweenF1

(b)(v) andF1
(a)(v) at

temperatures higher than roughly 1.1Tg , as can be seen from
the spectra in Fig. 3. If these spectra are analyzed as a s
peak, the peak frequency will change only by a negligib
amount@cf. Fig. 4~a!# and the width will stay more or les
temperature independent as a competition between the
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creasing width ofF1
(a)(v) and the larger one ofF1

(b)(v).
When we compare the results forc50 ~full lines in Fig. 4!
andc51 ~dashed lines!, we see that they behave quite sim
larly with some systematic deviations. In the~unphysical!
case of c51, F1

(b)(v) contains a contribution from the
Green’s function for thea process, cf. Eq.~44!. Therefore,
the high-temperature limit in this case is a real merging
the two peaks. Of course, the difference between thec51
and thec50 scenarios will be more outspoken if a mod
with more than two orientationsvb is considered for theb
process, as in this case there are more values the variablvb
can reach forc50 than the two in the simple two-site mod
considered here.

We now proceed to calculate the spin-lattice relaxat
rates as observed in high-field NMR. This rate is given
the well-known expression@41–44#

R1ª
1

T1
5

Kl
2

3
$J1~vL!14J2~vL!%. ~54!

Here,Kl denotes the coupling constant, i.e., the quadrup
beating frequency in case of deuteron NMR and the sec
moment in case of protons andvL is the Larmor frequency
The spectral densities for axially symmetric couplings
given by @43#

Jm~v!52 ReE
0

`

dt eivt^D0m
~2!@VPL~ t !#D0m

~2!* @VPL~0!#&.

~55!

In this expressionVPL denotes the orientation of the princ
pal axes system in the laboratory fixed frame. In the lat
the zL axis coincides with the main magnetic field. One h
to be careful in using the above expressions, since in
temperature interval considered in the present context,
NMR spectra undergo a change in line shape from a liqu
like Lorentzian to the typical solid-state spectra. These
given by a Pake spectrum in case of deuterons and ofte
a Gaussian for protons. At high temperatures in the liq
region, the above correlation function coincides just with
function Cm(t) given in Eq. ~40!. At lower temperatures
however, this is no longer true in general. If the reorien
tions due to thea process become slower than the avera
spin-lattice relaxation time, only the reorientations associa
with theb process give rise to relaxation and the above c
relation function reads

^D0m
~2!@VPL~ t !#D0m

~2!* @VPL~0!#&

5 (
n,n8

Dnm
~2!~Va!Dn8m

~2!* ~Va!^D0n
~2!@vb~ t !#D0n8

~2!* @vb~0!#&

as Va is now time independent and onlyvb gives rise to
relaxation. This, in particular, means that the spin-lattice
laxation rate now is a function of the orientation of the co
sidered interaction relative to the magnetic field. Each d
teron contributing to the Pake spectrum~or each pair of
protons! has a well-definedR1 and the decay of the norma
ized longitudinal magnetization is a superposition of all d
ferent decays possible in the system. In principle, the ab
expression can be used to calculate the relaxation rate for
f
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given line in the inhomogeneous NMR spectrum in a simi
way as in Ref.@43#. As theb process in our model gives ris
to a broad distribution of relaxation rates, the correspond
magnetization decay will be nonexponential and can be w
ten as

M ~ t !}E dm g~m!e2R1~m!t, T,Tg . ~56!

However, Eq.~56! is meaningful only in the absence of an
additional averaging processes. In proton NMR usually
exponential decay of the magnetization is found due to
spin diffusion. When considering deuteron NMR, the ma
netization decays nonexponentially in the glassy state. T
has been interpreted as a signature of nonergodicity@38#.
However, it has also been demonstrated that the effect
spin diffusion cannot be neglected in the case of deute
relaxation experiments@45#. It can be shown, on the othe
hand, that the initial decay of the magnetization is free fro
spin-diffusion effects@46# and this fact has been used
obtain a sound interpretation of deuteron spin-lattice rel
ation experiments on toluene@39#. Since the initial decay of
the magnetization curves is governed by the average
^R1&, we have, at all temperatures,

^R1&5
Kl

2

3
$^J1~vL!&14^J2~vL!&% ~57!

in which the average spectral density now reads

^Jm~vL!&5^J~v!&52 ReE
0

`

dt eivtCm~ t ! ~58!

with Cm(t) given by Eq.~40!, since the average rate als
includes an average over all possible orientations~powder
average! @47#. For a discussion of the treatment of expe
mental data and the ambuigities associated with different
erage spin-lattice relaxation rates we refer to Ref.@48#.

FIG. 5. SpectraF lm
(a)(v) versus frequency for the GCM atT

51.05Tg . The parameters are the same as in Fig. 3. SinceF l0
(a)(v)

andF l1
(a)(v), l51,2 are practically indistinguishable, the latter a

not shown. The dependence of the spectra onm is negligible, jus-
tifying the approximation Eq.~35!.
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We start with a brief discussion of the response functio
for the a processF lm

(a)(v). As stated in relation to Eq.~35!,
in principle, differentf lm

(a)(t)5*de*de8peq~e8!G( lm)(e,tue8)
contribute to the rotational correlation functions as well as
spin-lattice relaxation. In order to demonstrate the quality
the approximation~35! we plot the spectraf lm

(a)(v) for dif-
ferentm in Fig. 5 as a function of frequency for the GCM
a temperature of 1.05Tg. In case of l51 only f1

~a!~v!
[f10

~a!~v! is shown asf11
(a)~v! is almost indistinguishable

from this. The difference in the width between the spectra
l 51 ~dotted line! and l 52 ~full and dashed lines! is clearly
visible. The fact that in our model the stretching ofg1(t) is
less pronounced than that ofg2(t) has been extensively dis
cussed in Ref.@11#. The width and shape ofF21

(a)(v) and
F20

(a)(v) are almost identical and onlyF22
(a)(v) ~dashed line!

is somewhat broader thanF20
(a)(v). However, the differ-

ences among thef lm
(a)~v! for different m are very small.

When the same considerations are applied to the spe
F lm

(b)(v) of the b process, one has to keep in mind the d
pendence on the model chosen. Since at low temperat
F lm

(b)(v).F (b,0)(v) according to Eq.~45! is independent of
~lm!, there is no difference between the various spectra.
same holds forF lm

(b)(v) in the case ofc50 for all tempera-
tures, cf. Eq.~47!. Only if c51 is chosen, is there a depe
dence ofF lm

(b)(v) on ~lm!. As this dependence is the same
the one discussed above in the context of the spectrum a
ciated with thea process, we do not show these spectra h
From this discussion it is evident that the approximat
~35!, which neglects them dependence of the various spe
tra, does not represent any problem.

From the above expression for^R1& and the properties o
the Cm(t), we have, for the spectral densities,

^J~vL!&5 f a
SLR^J~a!~vL!&1~12 f a

SLR!^J~ab!~vL!&.
~59!

Spin-lattice relaxation rates calculated according to Eqs.~57!
and~59! are shown in Fig. 6~a! for various Larmor frequen-
cies vL . In these calculations we used the GCM andu
510° in the expressions forf a

SLR ~solid lines!. The other
parameters are the same as those chosen in Fig. 3. Her
usedc50 only. The dashed lines show the individual co
tributions from the two terms in Eq.~59! for 50 MHz. In
addition to these we included one LCM calculation for
MHz, where we used the sameu and d(T) as in the GCM
calculations~dotted line!. One clearly sees that the narrow
distribution g(m) in this case gives rise to a stronger tem
perature dependence in the glass. However, this does
allow us to determine this distribution due to the very p
nounced dependence of^R1& on u andd(T). This is exem-
plified in Fig. 6~b!. Here, we compared̂R1& for u510° ~full
lines! with u520° ~dashed lines! for the two different
choices ford(T) as explained in connection with Fig. 2 an
vL530 MHz. It is seen that the variation in the temperatu
dependence ofd(T) has a large effect on the temperatu
dependence of the relaxation rates. Additionally shown a
dotted line is the same LCM calculation as in Fig. 6~a!. It is
obvious that a variation in the width of the distribution
activation free energy for theb process has a very simila
effect as a variation in the temperature dependence of
s
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jump angled(T). Thus, as it appears from the model calc
lations, it is not possible to determine the parameters for
b relaxation experimentally from spin-lattice relaxation e
periments. Here, consideration of the frequency depende
of ^R1& may be helpful. If one assumes^R1&

21;vL
d @39#

and compares experiments performed at different Larm
frequencies, one can estimate the exponentd, which sensi-
tively depends on the width ofg(m). We find for the data of
Fig. 6 an approximately linear temperature dependenced
with d(0.8Tg).1.29 andd(Tg).1.21 for the GCM. In the
LCM the corresponding values are 1.64 and 1.48 at 0.8Tg
andTg , respectively. This clearly shows that for the broad
distribution ~GCM! there are more fluctuations in the MH
regime, although the mean time scales were taken to be
same in both calculations. The LCM calculations show t
one is nearer to the limiting low-temperature value ofd52
as obtained forG(m)!vL . Since a wide variation of Larmo
frequencies usually is not feasible in spin-lattice relaxat
experiments, a combination of these with dielectric spectr
copy seems to be most advisable. Such a combination
allow the determination of almost all parameters, if the me
and the width ofg(m) as determined by the dielectric ex
periment are used as an input for the NMR experiments.

FIG. 6. ~a! Average spin-lattice relaxation rates^R1& versus
inverse temperature. Here, we usedKl

2/35109 s21, which is a value
on the order of magnitude typical for the quadrupolar coupling
deuterons. The calculations were performed for the GCM with
same parameters as in Fig. 3~a! andc50, the only difference being
the choice of the angleu510° here. The solid lines represent^R1&
for 10, 30, and 50 MHz~from bottom to top!. The dashed lines are
the contributions due to the ‘‘pure’’a process and the ‘‘pure’’b
process for a 50 MHz. Additionally shown as the dotted line is
calculation for the LCM at 30 MHz.~b! The dependence of the
spin-lattice relaxation rates on the anglesd(T) andu are shown for
two examples at 30 MHz in the GCM. The full lines correspond
u510° and the dashed lines tou520°. The lower lying curves are
those for the choiced(T)5d0,ae2b5.5 and the upper curves fo
d(T)5d0,be2b8.0 according to Fig. 2. The dotted line is the sam
LCM calculation as in~a!.
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course, it has to be noted again that particularly the ju
angle d(T), which results from such an analysis, strong
depends on the model chosen. First, it can depend on
angle u used in the analysis. This dependence is not v
problematic as it merely sets the overall value of^R1& in the
glass, cf. Fig. 6~b!. More important is again the fact that w
used a two-site jump model, since the dependence off a

SLR on
u andd(T) changes if one considers another model. Nev
theless, the above-recommended combination should gi
reliable estimate of the small-angle fluctuations associa
with theb process in the glass. This has amply been dem
strated by Hinze and Sillescu@39#.

IV. DISCUSSION

Let us start the discussion with a couple of comme
concerning the model chosen in the present paper to des
both the slow primary and secondary relaxation in sup
cooled liquids and glasses. Since the free-energy lands
model presenting the overall framework ceases to m
sense in the form used here and in the earlier investigat
@10,11# at high temperatures where the number of relev
minima in the free energy is very small, we are restricted
a low-temperature regime. One would expect, that the cr
over from a liquidlike dynamics to activated dynamics tak
place in a temperature regime around the critical tempera
of idealized MCT. Here, we have chosen the parameter
the model calculations in a way that the correlation time
thea process equals approximately 1028 s atT51.2Tg . This
also is roughly that temperature where the critical tempe
ture of MCT is located. Therefore, we cannot make a
statements about the behavior at higher temperatures.

Concerning the model used for the reorientational dyna
ics associated with thea relaxation, we stress here only th
fact that this dynamics is assumed to be intrinsically coup
to the transitions in the free-energy landscape. The most
portant point is not represented by a specific choice of
parameters used to model these transitions but by the
sumed intrinsic coupling. In all model calculations we us
an isotropic small angular jump model for the reorientatio
due toa relaxation. The jump angle has been fixed to be 1
in all calculations. This means that we neglected any te
perature dependence of this angle for simplicity. Also,
existence of a distribution of jump angles, as has been fo
experimentally@12,34,35#, has been neglected. Taking the
into account would yield quantitative changes in the cal
lated spectra. A more dramatic change in the spectra is, h
ever, found if the mean jump angle is changed to lar
values, cf.@11#.

The slowb process is viewed as local restricted orien
tional fluctuations. These are modeled in the simplest p
sible way by a two-site jump model. As has been pointed
in the last section, this restrictive choice can be relaxed
principle. The calculations, however, become somew
more involved. The qualitative behavior of the spectra d
not change in any case as the occurrence of the diffe
termsAn1n2

( l ) (t) andBn1n2

( l ) (t) in the expression for the corre

lation functionsCn1n2

( l ) (t) according to Eq.~34! is indepen-

dent of the special choice for that model. The amplitud
f a

( ln) are the quantities that depend most sensitively on
p
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choice. As in the case of thea process, we neglected an
dependence of the jump angled on the value of the variable
e for simplicity. The most simple generalization of the mod
used here would be a superposition of more than one t
site jump models. If these are taken to be statistically in
pendent, the resulting amplitudesf a

D and f a
SLR would just be

given by the sum of the individual ones. In that case, ho
ever, reorientations about different axes may give rise to
ferent anglesu for both dielectric relaxation and spin-lattic
relaxation. It therefore appears most meaningful to interp
our anglesd andu as effective angles. For the latter, there
no given relation between the value for dielectrics and NM
A similar comment applies to the mean-squared displa
ment as shown in Fig. 2~a!. The jump distancer jump appear-
ing in Eq.~51! is not determined by the model and it is mo
likely that the superposition of all local fluctuations will su
up to the observed mean-squared displacement. Also, it
be noted that if we relax the simplifying assumption that t
amplitudesf a

( ln) are independent ofe, Eq. ~41!, we can take
into account the fact that there might be molecules not p
ticipating in theb relaxation due to vanishingu~e! or, more
probably, vanishingd~e!. This latter possibility should not be
ruled out as one can assume a high local density for sm
values ofe. This decreases the probability of local fluctu
tions. In this case the relative amplitudes of thea andb peak
are not related in any simple manner and Eq.~42! cannot be
used to calculate the time correlation functions. Additiona
the fraction of molecules participating in theb process may
well be temperature dependent in such a scenario. Thus
could account for the ‘‘islands of mobility’’@13# in principle.

When we consider the dielectric responseF9(v), it is
seen from Fig. 4 that a remarkable difference occurs betw
the peak frequencies ofF1

(b)(v) and the extrapolated one o

F
(b,0)

(v). As already pointed out, this difference is on th
order of one decade at the crossing temperature as pred
by extrapolation. The influence of thea process on theb
peak is already visible at temperatures;1.1Tg . This means
that even though the mean time scales of the two proce
differ by more than two decades, the effect of averaging
the distribution of jump ratesG~m! due toa relaxation cannot
be neglected at these temperatures. We mention that a s
lar behavior has been reported by Arbeet al. @17#. Thus, it
seems that even a slight extrapolation might yield unreali
estimates of the merging temperature. Therefore, conclus
about a realcrossingof the two processes as advocated
Ref. @16# seem questionable. From our model, one wo
assume that the two peaks always merge at high temp
tures and that the high-temperature process is thea process,
even though this can no longer be modeled with the pres
approach. This scenario has already been put forward
Williams and Watts@15#. They, however, assumed thea and
b processes to be statistically independent. We have c
mented on this assumed statistical independence already
important to recognize what the physical implications of th
assumption are. Independent of our concrete model u
here, it is plausible to assume that those reorientations a
ciated with thea process are related to structural changes
the supercooled liquid. Theb process is viewed as a loca
fluctuation in orientation within a given structure. Statistic
independence of the two processes means that the local
tuations are not at all affected by rearrangements of the lo
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structure. This seems to be most unrealistic from a phys
point of view, in particular, when taking into account th
heterogeneous nature@38# of the b process. In the above
picture this means that the rates for local fluctuations dep
on the local environment, independent of whether these fl
tuations are of an intramolecular or intermolecular orig
These rates change in the case of a structural rearrangem
One would not only assume that the relevant orientation
the axis of fluctuations are affected strongly by such a str
tural change but additionally the amplitude of the fluctu
tions. The latter corresponds to the jump angled in our
model. Therefore, a model in which there is a strong co
lation among the two processes seems to be much mo
accord with physical intuition. Our calculations with the co
relation parameterc set to zero,c50, correspond to a com
plete randomization of the value of the orientationvb re-
sponsible forb relaxation. Of course, this case of comple
correlation also represents an extreme scenario. Howe
this seems to be more in harmony with the underlying phy
cal picture than the assumption of statistical independen

The correlation functionsF l
(b)(t) can be written

in the form of a product in all cases, as long as a
correlation among the variablese and m is neglected
completely. Also in this case a factorization of the for
F l

(b)(t)5F l
(a)(t)F (b,0)(t) is only possible in the case ofc

[1, as is obvious from Eqs.~33!, ~37!, and~42!. In no other
choice of the parameters of the model is this kind of fact
ization possible. On the other hand, if it assumed on
contrary that there is a strong correlation amonge andm, the
reorientation ratesG~e;m! are determined~implicitly ! by the
value of e in a given free-energy minimum,G(e;m)
[G(e). In this case it is seen from the same equations
F l

(b)(t) is of the form

F l
~b!~ t !;E de peq~e!e2$G~e!1k~e!%t; c50

and cannot at all be written as a product. This also is
possible ifc51 is chosen in this case. In the model calcu
tions discussed in the last section we always assumed the
and m are uncorrelated. An argument in favor of a missi
correlation is the symmetric form of theb peak independen
of the form of thea peak. Realistically, one would assum
that a correlation among the two quantities cannot be
glected as can be seen if one assumes that a low vale
corresponds to high local density. Therefore, in an envir
ment of high density, one would assume the activation
ergy for a local process to be higher than in a correspond
low-density environment. Of course, the density changes
supercooled liquid are not expected to be extraordina
large and, therefore, the correlation must not be strong
any case, the assumption of no correlation amonge and m
represents a simplification. This discussion shows that
product form for F l

(b)(t) is available only as the conse
quence of a couple of approximations. We mention that
have also performed calculations ofF~v! with a strong cor-
relation amonge and m, where we chosem}(Ea2e) for
simplicity. The behavior concerning the peak positions
very similar to the findings of Fig. 4~a!. Also the behavior of
the width ofF1

(b)(v) is similar to the one shown in Fig. 4~b!.
The spectraF1

(b)(v), however, are not symmetric in an
al
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temperature regime, also not belowTg . Apart from this con-
tradiction to experimental findings, these calculations ag
do not show any crossing of the two peaks, as can also
inferred directly by inspection of the above expression
F l

(b)(t) for c50. We stress the fact that the behavior
F l

(b)(v) found here is independent of the input paramet
as it is solely a consequence of the averaging of the dis
bution g(m) associated with theG~m! due to the transition
ratesk(eue8). It, therefore, does not rely on any specifi
form of the chosen distributions~in particular, not ons and
k`

b! let alone a specific form for the correlation functions.
a model like the one proposed here, theb process canno
become slower than the structural relaxation.

When we consider the spin-lattice relaxation rates, it
found that the averaged rates can easily be calculated f
our model and the results show the same qualitative beha
as observed experimentally. We pointed out already
strong dependence of these rates on the anglesu andd. There
is, however, one restriction tod that must be met. If one
considers the deuteron NMR spectra belowTg , these are
very sensitive to reorientational motions. If reorientations
angles larger than roughly 20° take place on a time sc
faster than the inverse quadrupolar coupling constant,
effect of motional narrowing is visible in the spectra. In th
examples we chose for the temperature dependence ofd(T),
we haved(Tg);39° in one andd(Tg);24° in the other
example. If all ratesG~m! at Tg would be larger than
;106 Hz one would observe motional narrowing. Since t
fraction of such large rates is quite small in our examples~in
the GCM, it is on the order of 5%!, the spectra will show
only small effects due to narrowing as is compatible w
experimental data.@Whether or not motional narrowing i
observed in the NMR spectra, of course, delicately depe
on the choice for the temperature dependence ofd(T).# We
mention that this problem is overcome in the aforemention
models with a temperature-independent but large jump an
by a very small equilibrium population of the higher leve
Since the product of the two equilibrium populations ent
in the expression for the amplitudes, again a negligible eff
on the NMR spectra is obtained, although the jump ang
are chosen to be on the order of 40°@37# or 140°@38#. This
especially holds since in these investigations a very fast t
scale for the two-site jumps was assumed. We think that
choice of a two-site model without a bias as it is used her
more plausible especially in view of these large jump ang
Additionally it appears more natural that the jump angle
creases with temperature as an effect of thermal fluctuati
It has already been pointed out that a determination of
parameters for the dynamics of theb process by means o
spin-lattice relaxation experiments is strongly hampered
their sensitivity to the amplitudes. On the other hand, t
sensitivity can be used if this type of experiment is combin
with dielectric relaxation studies.

Finally, let us discuss the merging scenario of thea andb
process in view of the energy landscape model used for
structural relaxation. Since thea process is viewed as act
vated dynamics, the transitions among the different mimi
or metastable states set the scale for the lifetime of the in
mimimum reorientation ratesG~m!. If we use 10° jumps for
the isotropic reorientations due toa relaxation, roughly ten
transitionse→e8 are necessary in order for the correlatio
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functiong1(t) to decay to zero. This means that a dynami
averaging over the transition ratesk(eue8) is performed
when measuringg1(t). The effective distribution of reorien
tation rates is somewhat narrower than the correspon
one of thek(eue8). This effect gives rise to different stretch
ing of various time correlation functions as the efficiency
the performed averages are different. For example, if we
g1(t) for G(m)50 as calculated with the GCM atT
51.1Tg to a Kohlrausch function, we find stretching exp
nentsbKWW50.53 for 10° angular jumps andbKWW50.44
for random angular jumps. In the latter example, the dyna
cal averaging is reduced to a minimum, cf. the extens
discussions in Refs.@10,11#.

The averaging effect of the transition ratesk(eue8) on the
distribution of the ratesG~m!, on the other hand, is much th
same as studied in typical environmental fluctuation mod
@32,49,50#. As soon as some of thek(eue8) come on the time
scale of theG~m!, the distribution of effective reorientatio
rates starts to get narrowed as compared tog(m). This fact
explains why the influence of thea process on theb peak is
seen already at astonishingly low temperatures in the die
tric susceptibilities. This effect is best seen in the width
the b peak as shown in Fig. 4~b!. From that plot one would
estimate the temperature where the influence of thea relax-
ation@i.e., thek(eue8)# on theb peak sets in even lower tha
from Fig. 4~a!. What is of relevance is not the direct com
parison of the peak positions of thea andb peaks. Instead
one has to bear in mind the different character of the av
aging for the two processes. When the temperature is
creased, the averaging effect becomes more and more
nounced until the time scales ofk(eue8) and G~m! become
similar. Due to the same averaging, the shape of
F1

(b)(v) becomes asymmetric as the averaging is most
fective at low frequencies due to the fact that thek(eue8) are
smaller than theG~m!. Such a behavior has been found e
perimentally by Garweet al. @23#.

Strictly speaking, somewhere in the temperature region
the merging of the two peaks in dielectric spectroscopy
underlying assumptions of the model cease to be valid.
treatment of the structural relaxation by a master equat
Eq. ~1!, requires that the lifetime of the free-energy minim
is much longer than the time spent by the system on cros
the barriers between different minima. A Markovian descr
tion of the dynamics is expected to fail if this condition is n
met. Concerning theb process, the assumption of a simp
relationship of the Arrhenius form~50! for the reorientation
ratesG~m! makes sense only if the activation energiesm are
defined for a time long compared to the residence time of
system in one of the two orientations. If the lifetime of th
minima itself is only on that order of magnitude, then t
same holds for them, as they are defined only within th
minima. On the other hand, at a temperature where the
time of the extensive number of free-energy minima is
short to allow for activated dynamics, the minima itself b
come irrelevant for the thermodynamics of the system.
this case, one ends with one thermodynamically relev
free-energy minimum and the dynamics in phase spac
diffusive. It may well be described by MCT. We expect th
there is a finite temperature interval where this crossove
the dynamics takes place. Regarding the slowb relaxation,
this means that at high temperatures only thea relaxation
l
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remains, as there is only structural relaxation. It is import
to point out that the fastb process as treated by MCT is to b
viewed as structural relaxation in the present context. T
physical picture emerging from these considerations is v
close to the one put forward by Ro¨ssler@24#. The occurrence
of the slowb relaxation is deeply related to the crossover
the dynamical mechanism in the supercooled liquid state
in the present model the existence of different minima in
free energy is a prerequisite for the definition of the int
minimum relaxation associated withb relaxation. Though
this slowb relaxation appears to be an intrinsic feature of t
phase space geometry, the present model is not able to g
resolution to the puzzle that this process is observed in s
supercooled liquids but not in others. On the other hand,
spin-lattice relaxation rates in the glass often behave v
similar as a function of temperature. It, therefore, is tempt
to speculate that the amplitudes play a crucial role with
spect to the question of observability ofb processes. This
may be substantiated by the fact that it appears tha
Ca~NO3!2KNO3 a secondary relaxation is observable in m
chanical relaxation but not in dielectric relaxation stud
@51#.

As the model used for the primary relaxation is of a h
erogeneous nature, it immediately follows that also theb
relaxation is heterogeneous. This fact has first been not
in the NMR investigations of Schnauss, Fujara, and Sille
@38# and has repeatedly been found afterwards@39#.

V. CONCLUSIONS

In the present paper we have generalized a simple f
energy landscape model for primary relaxation in sup
cooled liquids in order to take into account the slow seco
ary relaxation observed in many glass-forming liquid
Whereas the primary relaxation is assumed to be intrinsic
coupled to transitions among different free-energy minim
this secondary relaxation process is viewed as a local re
ation within a given minimum. We concentrated on the c
culation of time correlation functions associated with m
lecular reorientations, but the generalization to translatio
motions of tagged particles poses no problem. The slowb
process is modeled by simple reorientational jumps am
two orientations. The activation energies for these reorien
tions are assumed to be distributed according to a Gaus
Several scenarios for the correlations among these activa
energies and the valuese of the free energy within a given
minimum and those among the dynamics of the relevant
entations and the transitions in the free energy landsc
have been considered. If no correlation among the ene
variablese and m is assumed, the dielectric susceptibilitie
for the secondary peak are symmetric at low temperature
accord with experimental findings. At higher temperatur
they become asymmetric due to the averaging effect of
transitions among different minima.

In the model presented here a crossing of the two pe
associated witha andb relaxation cannot occur, as the d
termining dynamics are the transitions among differe
minima. These transitions set the ultimate time scale. T
form of the correlation function relevant for dielectric rela
ation as a product ofa andb correlators is obtained only a
a special case for the physically counterintuitive assump
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of complete statistical independence of the reorientations
sociated with theb process and the transitions among t
free-energy minima. However, according to the abo
mentioned absence of any possibility of a crossing of the
peaks and the concomitant uselessness of extrapolation
the characteristic parameters for theb peak from low tem-
peratures, it seems advisable to analyze experimental
using this assumption, as has been done by Arbeet al. @17#.
The reason for this is given by the fact that the product u
in such an analysis contains thea peak as an input, which
reduces the number of parameters. Also, for the simple t
site model considered in this study, we found that the diff
ences between this assumption and the physically m
meaningful one of a strong correlation are not very lar
However, the conclusions raised from such an analy
should be handled with care.

When considering the spin-lattice relaxation rates as
culated with our model, the results are at least qualitativ
in accord with experimental findings. We pointed out tha
determination of the parameters characterizing theb relax-
ation in the glass will usually not be possible by spin-latt
relaxation experiments. Here, the combination of broadb
dielectric spectroscopy and NMR might in favorable ca
even allow the determination of jump angles due to the h
sensitivity of NMR to the amplitudes@39#.

Physically, the occurrence of the slowb relaxation in our
m
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model is intrinsically related to the often proposed change
transport mechanism in the supercooled liquid@19#. At high
temperatures the dynamics is viewed as diffusive in ph
space, whereas at low temperatures we are concerned
activated dynamics. The latter is modeled here via a ma
equation for the transitions among an extensive numbe
free-energy minima. Only if the existence of the ma
minima in free energy becomes relevant for the dynamic
it possible to define the slowb relaxation as we have don
here as an intraminimum relaxation process. In order to g
a better understanding of the interrelation among thea andb
processes, a more detailed picture of the free-energy la
scape is necessary.

In conclusion, we have presented a very simplified mo
for the b relaxation based on a free-energy landscape mo
that is capable of reproducing both the results of dielec
relaxation experiments and spin-lattice relaxation exp
ments with the same parameters and is free from physic
questionable assumptions.
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@6# R. Böhmer, R. V. Chamberlin, G. Diezemann, G. Geil, A
Heuer, G. Hinze, S. C. Ku¨bler, R. Richert, B. Schiener, H
Sillescu, H. W. Spiess, U. Tracht, and M. Wilhelm, J. No
Cryst. Solids235-237, 1 ~1998!.

@7# M. Ediger ~private communication! reports a temperature de
pendence of the lifetime of dynamical heterogeneities.

@8# Theoretical and Experimental Approaches to Supercooled L
uids: Advances and Novel Applications, edited by J. Fourkas
D. Kivelson, U. Mohanty, and K. Nelson~American Chemical
Society, Washington, D.C., 1997!.

@9# C. Z.-W. Liu and I. Oppenheim, Physica A235, 369 ~1997!;
247, 183 ~1997!.

@10# G. Diezemann, J. Chem. Phys.107, 10 112~1997!.
@11# G. Diezemann, H. Sillescu, G. Hinze, and R. Bo¨hmer, Phys.

Rev. E57, 4398~1998!.
@12# G. Diezemann, R. Bo¨hmer, G. Hinze, and H. Sillescu, J. Non

Cryst. Solids235-237, 121 ~1998!.
@13# G. P. Johari and M. Goldstein, J. Chem. Phys.53, 2372~1970!.
@14# G. P. Johari and M. Goldstein, J. Chem. Phys.55, 4245~1971!.
@15# G. Williams and D. C. Watts, Trans. Faraday Soc.67, 1971

~1971!.
.

al

-

@16# L. Wu, Phys. Rev. B43, 9906~1991!.
@17# A. Arbe, D. Richter, J. Colmenero, and B. Farago, Phys. R

E 54, 3853~1996!.
@18# A. Kudlik, C. Tschirwitz, S. Benkhof, T. Blochowicz, and E
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